سال 17، شماره 5 - ( مهر - آبان 1402 )                   جلد 17 شماره 5 صفحات 584-571 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fathi M, Barzegari E, Lotfollahi L, Jafari R, Nomanpour B, Rasekhian M. Outer membrane Proteins-focused Pseudomonas aeruginosa Vaccine Designed using Reverse Vaccinology. Iran J Med Microbiol 2023; 17 (5) :571-584
URL: http://ijmm.ir/article-1-2125-fa.html
فتحی معصومه، برزگری ابراهیم، لطف اللهی لیدا، جعفری رضا، نعمان پور بیژن، راسخیان مهسا. طراحی واکسن سودوموناس آئروژینوزا متمرکز بر پروتئین های غشای خارجی با استفاده از واکسن‌شناسی معکوس. مجله میکروب شناسی پزشکی ایران. 1402; 17 (5) :571-584

URL: http://ijmm.ir/article-1-2125-fa.html


1- گروه میکروب شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
2- مرکز تحقیقات زیست شناسی پزشکی، پژوهشکده فناوری بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
3- گروه میکروب شناسی و و ویروس شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی ارومیه، ارومیه، ایران
4- مرکز تحقیقات سلولی و مولکولی، پژوهشکده پزشکی سلولی و مولکولی، دانشگاه علوم پزشکی ارومیه، ارومیه، ایران
5- گروه میکروب شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران ، nomanpoursh@gmail.com
6- مرکز تحقیقات علوم دارویی، پژوهشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
چکیده:   (927 مشاهده)

زمینه و اهداف:  مقاومت آنتی بیوتیکی به عنوان یک تهدید بزرگ برای سلامت جهانی شناخته شده است که می تواند منجر به افزایش عوارض و مرگ و میر شود. در ۲۷ فوریه ۲۰۱۷، اولین فهرست پاتوژن های اولویت دار مقاوم به آنتی بیوتیک توسط سازمان بهداشت جهانی (WHO) منتشر شد. این پاتوژن ها، از جمله سودوموناس آئروژینوزا، بزرگترین تهدید را برای سلامت انسان به همراه دارند. این تحقیق به منظور معرفی پروتئین‌های مناسب کاندید واکسن علیه پروتئین‌های غشای خارجی سودوموناس آئروژینوزا (OMPs) با استفاده از رویکرد واکسینولوژی معکوس انجام شد.
مواد و روش کار:  پنجاه و هشت ایزوله بالینی و ۹۹۸۲ توالی پروتئین غشای خارجی برای بررسی ویژگی‌های مشتق شده از توالی در Vaxign۲ استخراج شدند. ابتدا ۳۰ پروتئین با بیشترین احتمال چسبندگی انتخاب شدند و در مرحله بعد ۱۰ کاندید مشترک از بین ۵۸ سویه با بالاترین امتیاز به عنوان کاندیدای مطالعات بیشتر معرفی شدند. پس از تعیین ویژگی‌های فیزیکوشیمیایی این واکسن‌های کاندید، وجود دامنه‌های محافظت‌شده در ۲ پروتئین از ۱۰ پروتئین پیش‌بینی شد.
یافته ها:  بر اساس نتایج به دست آمده از تجزیه و تحلیل بیوانفورماتیک خواص آنتی ژنی این پروتئین ها، ما ۱۰ پروتئین غشای خارجی را شناسایی کردیم که دارای بالاترین امتیاز آنتی ژنی هستند، در بین ۵۸ ایزوله بالینی مشترک هستند. هیچ همولوگ پروتئین انسانی ندارند و کمتر از ۱ مارپیچ گذرنده دارند. این پروتئین های کاندید خواص فیزیکوشیمیایی مطلوبی دارند. و حضور دمین های حفاظت‌شده فقط در غشای خارجی پورین F و گیرنده آهن انتروباکتین پیش‌بینی شد.
نتیجه‌گیری:  ما ۱۰ پروتئین کاندید را پیشنهاد کردیم از جمله پروتئین غشای خارجی F ((OprF و گیرنده انتروباکتین فریک که ویژگی های مناسبی را نشان دادند.

متن کامل [PDF 682 kb]   (138 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: بیوانفورماتیک میکروبی
دریافت: 1402/4/7 | پذیرش: 1402/6/28 | انتشار الکترونیک: 1402/9/8

فهرست منابع
1. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369-78. [DOI:10.1016/j.jiph.2016.08.007] [PMID]
2. White A, Hughes JM. Critical importance of a one health approach to antimicrobial resistance. EcoHealth. 2019;16:404-9. [DOI:10.1007/s10393-019-01415-5] [PMID]
3. Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines against antimicrobial resistance. Front Immunol. 2020;11:1048. [DOI:10.3389/fimmu.2020.01048] [PMID] [PMCID]
4. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66. [DOI:10.1016/S1473-3099(18)30605-4] [PMID]
5. Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, et al. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. Msystems. 2023;8(1):e00904-22. [DOI:10.1128/msystems.00904-22] [PMID] [PMCID]
6. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277.
7. Mladenovic‐Antic S, Kocic B, Velickovic‐Radovanovic R, Dinic M, Petrovic J, Randjelovic G, et al. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: a 10‐year study. J Clin Pharm Ther. 2016;41(5):532-7. [DOI:10.1111/jcpt.12432] [PMID]
8. Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not?. Proc Royal Soc B: Biol Sci. 2017;284(1851):20162562. [DOI:10.1098/rspb.2016.2562] [PMID] [PMCID]
9. Tagliabue A, Rappuoli R. Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol. 2018;9:1068. [DOI:10.3389/fimmu.2018.01068] [PMID] [PMCID]
10. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens. 2021;10(10):1310. [DOI:10.3390/pathogens10101310] [PMID] [PMCID]
11. Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells. 2023;12(1):199. [DOI:10.3390/cells12010199] [PMID] [PMCID]
12. Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent advances in vaccine development. Vaccines. 2022;10(7):1100. [DOI:10.3390/vaccines10071100] [PMID] [PMCID]
13. Rello J, Krenn C-G, Locker G, Pilger E, Madl C, Balica L, et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Critical Care. 2017;21:1-13. [DOI:10.1186/s13054-017-1601-9] [PMID] [PMCID]
14. Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, et al. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. Drug Des Devel Ther. 2019:909-24. [DOI:10.2147/DDDT.S189847] [PMID] [PMCID]
15. Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S, Santini L, et al. A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci. 2006;103(29):10834-9. [DOI:10.1073/pnas.0603940103] [PMID] [PMCID]
16. Ni Z, Chen Y, Ong E, He Y. Antibiotic resistance determinant-focused Acinetobacter baumannii vaccine designed using reverse vaccinology. Int J Mol Sci. 2017;18(2):458. [DOI:10.3390/ijms18020458] [PMID] [PMCID]
17. Del Tordello E, Rappuoli R, Delany I. Reverse vaccinology: exploiting genomes for vaccine design. Human vaccines: Elsevier; 2017. p. 65-86. [DOI:10.1016/B978-0-12-802302-0.00002-9]
18. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol. 2020;11:1581. [DOI:10.3389/fimmu.2020.01581] [PMID] [PMCID]
19. Ong E, Cooke MF, Huffman A, Xiang Z, Wong MU, Wang H, et al. Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 2021;49(W1):W671-W8. [DOI:10.1093/nar/gkab279] [PMID] [PMCID]
20. Ghaderzadeh M, Asadi F, Hosseini A, Bashash D, Abolghasemi H, Roshanpour A. Machine learning in detection and classification of leukemia using smear blood images: a systematic review. Sci Program. 2021;2021:1-14. [DOI:10.1155/2021/9933481]
21. Irum S, Andleeb S, Ali A, Rashid MI, Majid M. Quest for novel preventive and therapeutic options against multidrug-resistant Pseudomonas aeruginosa. Int J Pept Res Ther. 2021;27(4):2313-31. [DOI:10.1007/s10989-021-10255-3] [PMID] [PMCID]
22. Hernando-Amado S, Martínez JL. "Antimicrobial Resistance in Pseudomonas aeruginosa". MDPI; 2023. p. 744. [DOI:10.3390/microorganisms11030744] [PMID] [PMCID]
23. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
24. Meskini M, Goodarzi NN, Fereshteh S, Bolourchi N, Mirzaie A, Badmasti F. A bioinformatics approach to introduce novel multi-epitope vaccines against Acinetobacter baumannii retrieved from immunogenic extracellular loops of outer membrane proteins. Inform Med Unlocked. 2022;31:100989. [DOI:10.1016/j.imu.2022.100989]
25. Hancock R, Poole K, Benz R. Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol. 1982;150(2):730-8. [DOI:10.1128/jb.150.2.730-738.1982] [PMID] [PMCID]
26. Cornelis P, Bodilis J. A survey of TonB‐dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep. 2009;1(4):256-62. [DOI:10.1111/j.1758-2229.2009.00041.x] [PMID]
27. Hatano K, Boisot S, DesJardins D, Wright D, Brisker J, Pier GB. Immunogenic and antigenic properties of a heptavalent high-molecular-weight O-polysaccharide vaccine derived from Pseudomonas aeruginosa. Infect Immun. 1994;62(9):3608-16. [DOI:10.1128/iai.62.9.3608-3616.1994] [PMID] [PMCID]
28. Stanislavsky ES, Lam JS. Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol Rev. 1997;21(3):243-77. [DOI:10.1111/j.1574-6976.1997.tb00353.x] [PMID]
29. Ghysels B, Dieu BTM, Beatson SA, Pirnay J-P, Ochsner UA, Vasil ML, et al. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology. 2004;150(6):1671-80. [DOI:10.1099/mic.0.27035-0] [PMID]
30. De Mot R, Proost P, Van Damme J, Vanderleyden J. Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. neruginosa and P. syringae. Molec Gen Genet. 1992;231:489-93. [DOI:10.1007/BF00292721] [PMID]
31. Hardham JM, Stamm LV. Identification and characterization of the Treponema pallidum tpn50 gene, an ompA homolog. Infect Immun. 1994;62(3):1015-25. [DOI:10.1128/iai.62.3.1015-1025.1994] [PMID] [PMCID]
32. Nguyen Y, Sugiman-Marangos S, Harvey H, Bell SD, Charlton CL, Junop MS, et al. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J Biol Chem. 2015;290(1):601-11. [DOI:10.1074/jbc.M114.616904] [PMID] [PMCID]
33. Piselli C, Golla VK, Benz R, Kleinekathöfer U. Importance of the lysine cluster in the translocation of anions through the pyrophosphate specific channel OprO. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2023;1865(2):184086. [DOI:10.1016/j.bbamem.2022.184086] [PMID]
34. Ochsner UA, Vasil ML. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci. 1996;93(9):4409-14. [DOI:10.1073/pnas.93.9.4409] [PMID] [PMCID]
35. Lee K, Lee K-M, Go J, Ryu J-C, Ryu J-H, Yoon SS. The ferrichrome receptor A as a new target for Pseudomonas aeruginosa virulence attenuation. FEMS Microbiol Lett. 2016;363(11):fnw104. [DOI:10.1093/femsle/fnw104] [PMID]
36. Tamber S, Hancock RE. Involvement of two related porins, OprD and OpdP, in the uptake of arginine by Pseudomonas aeruginosa. FEMS Microbiol Lett. 2006;260(1):23-9. [DOI:10.1111/j.1574-6968.2006.00293.x] [PMID]
37. Yamano Y, Nishikawa T, Komatsu Y. Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1. Mol Microbiol. 1993;8(5):993-1004. [DOI:10.1111/j.1365-2958.1993.tb01643.x] [PMID]
38. Yamano Y, Nishikawa T, Komatsu Y. Involvement of the RpoN protein in the transcription of the oprE gene in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1998;162(1):31-7. [DOI:10.1111/j.1574-6968.1998.tb12975.x] [PMID]
39. Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinform. 2013;14(4):1-10. [DOI:10.1186/1471-2105-14-S4-S2] [PMID] [PMCID]
40. Papaneri AB, Johnson RF, Wada J, Bollinger L, Jahrling PB, Kuhn JH. Middle East respiratory syndrome: obstacles and prospects for vaccine development. Expert Rev Vaccines. 2015;14(7):949-62. [DOI:10.1586/14760584.2015.1036033] [PMID] [PMCID]
41. Möller J, Bodenschatz M, Sangal V, Hofmann J, Burkovski A. Multi-Omics of Corynebacterium Pseudotuberculosis 12CS0282 and an In Silico Reverse Vaccinology Approach Reveal Novel Vaccine and Drug Targets. Proteomes. 2022;10(4):39. [DOI:10.3390/proteomes10040039] [PMID] [PMCID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.